
A four-step strategy is described which is aimed at optimizing the
separation parameters of the chromatographic fingerprint of herbal
medicines. In the optimization procedure, a model is built to
predict the retention time of components. The proposed model
shows good retention prediction potency with an average relative
deviation of 1.78%. The grid search method is used in optimizing
gradient parameters. In addition, an iterative procedure is adopted
to further improve the prediction accuracy of the gradient retention
time and the quality of the chromatogram. The whole optimization
process has been validated by real samples.

Introduction

The chromatographic fingerprint technique has been
accepted as a universal approach for evaluating the stability and
homogeneity of herbal medicines (1–2). A single linear gradient
profile is usually preferred to separate complicated compounds
in herbal medicine, so optimization of the gradient conditions is
a crucial step in fingerprint separation with good sensitivity, fea-
sibility, and reproducibility.

Many methods have been used to optimize parameters of
linear gradient elution (3–6). The main optimization method
uses predictive models. These models can be generally classified
into two categories, theoretical models and chemometric
models. Theoretical models are mathematical expressions
derived from the retention theory in gradient elution, such as
the widely used linear solvent strength (LSS) model proposed by
Snyder and co-workers (7–8), and its developed models (9–11). It
was defined as:

Eq. 1

where b = t0∆ϕS / tG, tD is the gradient delay time, t0 is the
column dead-time, and k0 is the capacity factor in the initial
mobile phase composition of the gradient; ∆ϕ is the change in
the mobile phase composition, tG is gradient time, and S is a con-
stant for a given solute and an organic solvent.

In the chemometric models, a regression analysis based on the
chromatographic behavior and molecular structure of solutes,
namely the quantitative structure retention relationship (QSRR)
model, is usually used. QSRR derives relationships between
chromatographic parameters and the descriptors characterizing
molecular structure of the solutes. Three main types of the
QSRR model have been reported in the literature, such as the the
linear solvation energy relationship-based model (12–13), the
logP-based (n-octanol–water partition coefficients) model (14),
and models based on quantum chemical indices or other struc-
tural descriptors (15). These empirical models show good reten-
tion prediction potency, but require structure parameters of
solutes that obviously are not all applicable for the possible
solutes (e.g., unknown components in herbal medicine).
A business-objective-based, constraint-based method for
optimizing the operational parameters of high-performance
liquid chromatography (HPLC) was presented by Chester (16). It
is flexible to optimize isocratic separations, but is difficult to
optimize separations of complicated components with retention
factor k of a wide range.

In this work, we propose a straightforward but efficient mul-
tiple regression model. It can accurately predict retention times
under different gradient conditions of experimental domain. It
especially suits the retention prediction of complex samples (e.g.,
herbal medicines). Moreover, a grid search algorithm was applied
to optimize parameters of gradient conditions and an iterative
procedure was used to further improve the accuracy of predic-
tion. Along with a reasonable experimental design and optimiza-
tion criteria, the optimal conditions can be obtained. This
strategy has been used to optimize the separation of a real herbal
medicine.
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Algorithm

Predictive model based on multiple regressions
Successful application of the multiple regression analysis

depends on the selection of reasonable and independent vari-
ables. In a gradient system, many factors can affect the chro-
matographic behavior of a component (e.g., the stationary phase,
temperature, the organic solvent, etc.). Some of them can be
determined by preliminary experiments in practice. Only a few
factors that affect separation markedly need to be considered for
further optimization. In a linear gradient elution process, the
three gradient parameters, B0, Bi, and tG, namely initial, final
organic solvent concentration, and gradient time, play the key
roles in the retention behavior of solutes. Therefore, the three
gradient parameters were selected as the optimization parame-
ters and independent variables.

The best fitting equation between the retention time and the

three parameters (B0, Bi, and tG) was explored by a least squares
regression. A search needs to be performed to find the best fitting
model from the simplest linear regression to more complex poly-
nomial regressions. The linear regression has the following
form:

Eq. 2

where tRi is the retention time of compound i, i is peak index; tRS
is the retention time of the reference peak used to minimize the
error resulting from column conditioning effects; α0 to α3 are
regression coefficients; TG = tG / 100 is for the dimension consis-
tency of the three parameters in the equation.

The second-order polynomial model is explored as well. The
third- and higher-order variable interactions can be omitted
because they were shown to be statistically unimportant (17).
The second-order polynomial model involving three variables
can be described as below:

Eq. 3

where β0 to β9 are regression coefficients. There are nine
variables in Equation 3, so a stepwise regression option should
be performed to choose variables entering the regression equa-
tion according to a defined criterion or the contribution to the
dependent. With the criterion of the probability of F-to-enter
≤ 0.05, the stepwise regression analysis was carried out using the
statistical software SPSS. The regression result is that the strong
relevant variables in the model are B0, Bi, and tG, the same as that
of Equation 2. Hence the relationship between logarithm of the
relative retention time and the gradient variables is a linearly
correlated rather than a second-order relationship. The final fit-
ting model can be expressed by Equation 2.

Optimization strategy
A four-step optimization strategy was used to achieve

optimized gradient conditions. Figure 1 shows the flow chart of
the optimization procedure and the details are described below.

Experimental design
In this work, the Chinese traditional medicine Pueraria thom-

sonii was used as the sample. It contains a high content of
flavonoid derivatives, of which puerarin is most abundant.
Reversed-phase LC methods with ODS columns and
methanol–water mobile phases were recommended to separate
this kind of substance (18). All chromatographic parameters,
including column temperature, detection wavelength, injection
volume, and flow rate were selected by preliminary experiments.
According to the preliminary experiments, the selected factors
(B0, Bi, and tG) and their optimization ranges were set to be
0.16–0.28% (v/v), 0.52–0.76% (v/v), and 34–58 min, respectively.

In order to test the rule between the solute retention and the
gradient parameters, a great deal of experiments are necessary.
Therefore, selecting the typical experiments, which are enough
to represent the whole range of parameters, is required by statis-
tical methods. The technique for experimental design, named
the uniform design, proposed by K.T. Fang in the 1980s (19–20)

log = αo + α1B0 + α2TG + α3Bi
tRi

tRs

log = βo + β1B0 + β 2TG + β 3Bi + β4B0TG + β5B0Bi +
β6TGBi + β 7B0

2 + β8TG + β 9Bi
2

tRi

tRs

Figure 1. Outline of the optimization procedure.



based on a quasi-Monte Carlo method or number-theoretic
method, was selected to design the starting experiments. The
uniform design allocates the experimental points regularly and
uniformly, so it is a good choice.

Determining predictive model coefficients
A predictive model that accurately describes the effect of vari-

ables on solute retention is necessary. In this work, a predictive
model was built based on multiple regressions. The retention
equation of each component can be expressed by Equation 2.
Coefficients of the retention model (α0 to α3) were obtained by
multiple regression analysis based on the data of starting experi-
ments. Then, the retention time of solutes can be predicted
under any gradient conditions in the optimization domain.

Selecting optimization criterion
Before the optimization begins, a quality criterion must be

defined to reflect the desirability of separation. Many quality cri-
terion functions have been used in HPLC optimization, such as
hierarchical chromatographic response function (HCRF) (21),
chromatographic response function (CRF) (22), and global
resolution function (r*) (23–24). HCRF was defined as:

Eq. 4

where n is the number of peaks in the chromatogram, Rmin is the
resolution of the least separated pair of peaks, and tL is the reten-
tion time of the last peak. CRF can be expressed as following:

Eq. 5

where Ri is the resolution between the ith and the (i + 1)th peaks,
L is the number of peaks appearing in the chromatogram, TA, TL,
T1, and T0 are the maximum acceptable time, retention time of
the final peak, retention time of the first peak, and the minimum
retention time of the first peak, respectively, and w1 to w3 are
weighting factors selected by the analyst. Global resolution func-
tion r* (23,24) is calculated based on:

Eq. 6

where separation factor si, i+1 = (ti+1 – ti) / (ti+1 + ti), Si, i+1 = 1 / n
× ∑ (Si, i+1), ti+1, ti are the retention time of adjacent peaks, n is
the total number of peaks, and i = 0 to n-1 is peak index. In the
fingerprint of an herbal medicine, the overlapping of peaks often
appears and accurate determination of peak widths becomes dif-
ficult. However, the separation factor Si, i+1, is independent of the
column efficiency and its calculation requires only retention
time. So the basic quality criterion based on Si, i+1 seems more
appropriate.

For chromatographic fingerprints of herbal medicines, we pay
more attention to three aspects: a large number of peaks of phar-
macologically active components, a good separation of complex
mixtures, and a short analysis time. HCRF excessively focuses on
the effect of the resolution for the least separated pair of peaks
while ignoring distribution of other peaks. For CRF, the quality
of the chromatogram is determined by well-resolved peaks while
the poorly resolved peaks do not influence much of the function

value. The global resolution function r* aims at a uniform distri-
bution of the detected peaks in a short analysis time. r* seems
not to reflect the effect of peak number. In fact, the peak number
is the largest when r* reaches the maximum. Obviously, r* is
more suitable in herbal medicine fingerprint separations, and
was chosen as the optimization criterion.

Searching for the optimization point
An appropriate optimization algorithm can find the desired

value of the selected criterion function within the experimental
domain as well as corresponding optimal experimental parame-
ters. In this work, the principles for selection of an optimization
algorithm include a short run time, a simple algorithm, and
obtaining a global optimum. The grid search algorithm is an
appropriate alternative to be employed to search for optimal sep-
aration conditions. The search procedure consists of: (i) setting
step-length to each parameter. Namely, each parameter is
divided into different grid numbers in the optimization domain.
Thus the simulative experimental points can be obtained. (ii)
Calculating the retention time of each solute in different experi-
mental points. (iii) Adjusting the order of peaks according to the
sequence of time and calculating the value of r* under each
experimental point. (iv) Screening the whole experimental
points in the optimization domain and selecting the maximum
value of r*; its corresponding gradient parameters are the
optimum conditions.

Once the optimization points are obtained by the previously
mentioned optimization steps, experiments can then be per-
formed. If the experiment results obtained are satisfied, the opti-
mization process is stopped. Otherwise, an iterative operation
needs to be sequentially performed to improve the separation.
The iterative procedure includes two steps. In the first step, the
experiment data presently obtained will be added into the pre-
vious data set and the regression coefficients of the retention
model can then be modified. In the second step, the grid search
procedure as stated previously will be carried out again, and then
a new optimal point can be obtained. The iterative process
should be repeated until the experiment result is satisfied. The
end requirements are: (i) | rn+1* – rn* | < 0.01, where rn+1* is the
value of r* from the new point; rn* is the value of r* from the pre-
vious optimization point; (ii) |B0n+1 – B0n| <0.5%, |TGn+1 – TGn|
< 0.005% and |Bin+1 – Bin| <0.5%, where B0n+1, TGn+1, and Bin+1
are the gradient parameters of the new optimal point; B0n, TGn,
and Bin are that of the previous ones.

Experimental

HPLC instrumentation
The gradient elution of samples was performed with a

Shimadzu LC-10AD HPLC system (Shimadzu, Kyoto, Japan). It
is equipped with two low-pressure pumps (LC-10ADvp), a DGU-
12A degasser, and a SPD-M10Avp diode-array UV detector, and
operated with a CLASS-vp workstation (Shimadzu). A Hypersil
C18 column (150 mm × 4.6 mm i.d., 5 µm particle size, Dalian,
China) was used. The dead time (t0) of the column was deter-
mined with uracil as the marker. The system’s dwell-time (tD)
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was determined by running a blank gradient where 0.3% acetone
was increased from 0% to 1% in 20 min as previously reported
(25). The average values of t0 and tD were 2.688 ± 0.015 min
(average ± SD, n = 6) and 2.530 ± 0.066 min (average ± SD, n =
6), respectively.

Chemicals and reagents
The herbal sample of Pueraria thomsonii (Fen-Ge in Chinese)

was purchased from the Beijing Tongrentang herbal shop.
Standard puerarin was purchased from Chinese National
Institute for Control of Pharmaceutical and Biological Products
(Beijing, China), lot number: 752-200108. Chromatographic-
grade methanol was purchased from Hanbang Science &
Technology Company. Other reagents were of analytical grade or
better and of commercial availability. Double distilled water was
used throughout.

Chromatographic parameters
The optimized chromatographic procedure consists of a linear

gradient elution using a mixture of 0.1% glacial acetic acid
aqueous solution and methanol as the mobile phase. The flow
rate was 1.0 mL/min, and the injection volume was 20 µL. The

column temperature was maintained at 30ºC.
The detection wavelength was set at 250 nm.

Sample preparation
Approximately 0.8 g Pueraria thomsonii

powder were weighed and then transferred to a
100-mL conical beaker with padding. A 50.0 mL
30% methanol solution was then added to the
beaker, followed by a 30 min sonication. After
cooling to 25ºC, the solution was filtered firstly
through a filter paper and then a 0.45 µm filter.
The filtrate was kept for HPLC separation.

Software
The grid search algorithm was written in

Matlab7.0 (The Mathworks Inc.) by the authors
and run on a PC with 600MHz, 256M Memory
Lenovo P4 processor PC operated with Windows
XP/2000. Regression analysis was performed
using SPSS11.5 software (SPSS Inc.) and
graphical outputs were produced by Origin7.5
(Originlab Corp.).

Results and Discussion

Fitting of experimental data to
regression model

According to the uniform design method
(18–19), the uniform table U7 (73) (26) is
selected. Because B0, Bi, and tG are continuous
quantitative factors and homogeneously fixed at
seven levels, seven experiments were subse-
quently designed. The sequence numbers from
1 to 7 are the starting experiments in Table I. By
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Table I. Conditions of Gradient Experiments and
Corresponding Values of HCRF, CRF, and r*

Factor

Test no.* B0 (%) tG (min) Bi (%) HCRF CRF† r*

1 20 58 64 14000962.9 1.837 0.7207
2 26 54 72 14001335.1 0.626 0.7866
3 18 34 68 13000889.9 0.159 0.6433
4 16 50 56 13000798.9 2.204 0.5426
5 22 38 76 14001012.8 0.172 0.7302
6 24 46 52 13001071.2 1.589 0.6811
7 28 42 60 13001508.4 0.693 0.5312
8 24 45 65 14001190.7 0.713 0.7919
9 25 48 62 14001312.5 0.518 0.8037

10 25 48 62 14001312.5 0.518 0.8037
11 17 44 70
12 23 40 66
13 25 45 65

* Experiments 1 to 7 are starting experiments by uniform design. 8 to 10 show the
number of optimization experiments; 11 to 13 list the experiment conditions to vali-
date the robustness of model.

† TA = 60 min, TO = 1 min, W1 = W2 = W3 = 0.1.

Table II. The Multiple Regression Equation Coefficients and Goodness of Fit
Assessment from the Initial Data Sets and Enlarged Data Sets Adding
Optimal Points

Coefficients Statistical parameters

Peak no. αα0 αα1 αα2 αα3 R SE F P

1 –0.6231 0.6598 –0.3001 0.2084 0.9394 0.0232 7.513 0.0659
2 –0.0686 –1.1750 –0.2249 0.1829 0.9797 0.0166 23.94 0.0135
3 –0.0098 –1.1570 –0.1405 0.1689 0.9979 0.0049 236.3 0.0005
4 –0.1270 –0.1700 –0.1268 0.1252 0.9263 0.0105 6.046 0.0868
5 –0.2750 0.8457 –0.1662 0.1507 0.9613 0.0167 4.060 0.3460
6 1.7056 –2.5017 0.2986 –0.2801 0.9971 0.0124 173.6 0.0007
7 0.0471 0.1068 0.0818 –0.0815 0.9572 0.0051 10.94 0.0401
8 0.0230 0.5099 0.0666 –0.0965 0.9995 0.0011 978.7 0.0000
9 0.0358 0.6954 0.0864 –0.1401 0.9996 0.0012 1423 0.0000

10 0.0646 0.7210 0.1353 –0.1956 0.9985 0.0029 334.4 0.0003
11 0.0621 1.0951 0.1391 –0.2239 0.9996 0.0020 1384 0.0000
12 0.0637 1.1473 0.1388 -0.2292 0.9996 0.0023 1145 0.0000
13 0.1046 1.9508 0.2414 -0.4045 0.9995 0.0044 923.9 0.0000
14 0.1687 2.1815 0.2763 -0.4473 0.9993 0.0081 252.4 0.0462

The modified coefficients Statistical parameters after modification

1 –0.6500 0.6158 –0.3467 0.3039 0.9601 0.0184 11.78 0.0363
2 –0.0789 –1.2133 –0.2440 0.2258 0.9765 0.0179 20.52 0.0168
3 –0.0098 –1.1667 –0.1411 0.1718 0.9969 0.0058 162.8 0.0008
4 –0.1335 –0.1829 –0.1382 0.1489 0.9168 0.0101 5.268 0.0903
5 –0.2744 0.8337 –0.1640 0.1517 0.9624 0.0119 8.370 0.1085
6 1.7260 –2.4827 0.3331 –0.3483 0.9996 0.0048 1178 0.0000
7 0.0509 0.1143 0.0886 –0.0955 0.9529 0.0047 9.871 0.0000
8 0.0224 0.5101 0.0657 –0.0948 0.9995 0.0011 921.9 0.0000
9 0.0345 0.6931 0.0842 –0.1356 0.9997 0.0011 1702 0.0000

10 0.0660 0.7219 0.1375 –0.1999 0.9984 0.0028 303.9 0.0003
11 0.0601 1.0912 0.1356 –0.2167 0.9997 0.0018 1573 0.0000
12 0.0614 1.1425 0.1346 –0.2205 0.9996 0.0020 1335 0.0000
13 0.1416 1.9427 0.2337 –0.3886 0.9996 0.0038 1113 0.0000
14 0.1659 2.1786 0.2771 –0.4434 0.9993 0.0060 470.3 0.0021
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performing the designed experiments, 14 components were sep-
arated from the chromatographic fingerprint of Pueraria thom-
sonii extracts. Among them, the 6th peak was identified as
puerarin by comparing with standard puerarin, and taken as the
reference peak. Experimental data of each component were then
fitted using Equation 2 by least squares approximation.
Subsequently, 14 total regression models can be obtained and
their coefficients and statistical results are listed in Table II. The
modified coefficients (obtained after iterative optimization, see
below for details) and the corresponding statistical results are
also listed in Table II.

From the coefficients of these equations in Table II, we found
that |α1| is much larger than |α2| and |α3|. This indicates that the
contribution of B0 is the largest in the equation, therefore B0 is
the key factor. These statistical results show that multiple corre-
lation coefficients (R) of most compounds are near to 1 and their
corresponding F-test value is highly significant. Take the
number 9 peak as an example (see Table II), multiple correlation
coefficients (R = 0.9996), standard error of estimate (SE =
0.0012), the significance level of the whole equation (P = 0.000),
and the value of F-test of significance (F = 1423) are all very
good. Therefore, we can conclude that the regression model is
significant and its data fitting is satisfied. It also indicates that the

logarithm of the relative retention time and the gradient vari-
ables (B0, Bi, and tG) are highly linearly correlated. A few bad data
can also be found in Table II; for example, peak 5, with F = 4.060,
P = 0.3460 (P > 0.05) shows statistically insignificant. The reason
is that when some peaks appear crossing or overlapping, their fit-
ting results may appear a statistically quality descending.

Comparison of our regression model with the LSS model
A model with a solid goodness-of-fit measure may not perform

as well as expected. In order to estimate the robustness of the
model, its predictive accuracy should be further determined.
Thus another three gradient experiments were carried out to val-
idate the accuracy of retention predicting in the optimization
region. Table I lists the experimental conditions of experiments
11 to 13. The LSS model (Equation 1) is also employed to predict
the retention time of each component under the three gradient
conditions. Parameters k0 and S and in the LSS model of each
solute are calculated by a non-linear regression using SPSS11.5
or the Microsoft Solver (27) in Microsoft Excel with the data of
experiments. 

The predictive results by these different models are shown in
Table III. We evaluate the predictive power of a model by com-
paring the relative deviations. It can be seen that the maximal

Table III. Comparison of Predictive Power by the Multiple Regression and LSS Models Under Three Gradient Conditions

The 11th experiment

Peak no. Exp.* (min) MLR (min) LSS (min) EM (%) EL (%)

1 5.387 5.231 4.351 2.90 –8.80
2 9.355 9.469 6.869 –1.22 26.6
3 11.211 11.628 8.569 –3.72 23.6
4 12.213 12.557 9.698 –2.81 20.6
5 12.981 13.084 11.442 –0.79 11.9
6 16.968 16.429 13.054 3.18 23.1
7 17.653 18.189 14.551 –3.03 17.6
8 19.008 19.366 16.044 –1.88 15.6
9 20.117 20.395 17.170 –1.38 14.6

10 20.853 21.155 17.829 –1.45 14.5
11 23.243 23.349 20.342 –0.46 12.5
12 23.637 23.714 20.756 –0.33 12.2
13 33.333 32.835 30.878 1.49 7.40
14 37.429 36.611 35.327 2.18 5.60
E% (max)† 3.72 26.6
E% (ave) 1.92 15.3

The 12th experiment
Peak no.
1 4.000 4.083 4.274 2.09 –13.8
2 5.717 5.710 6.724 0.12 –17.6
3 7.232 6.984 8.543 3.43 –18.1
4 8.715 8.719 9.672 –0.05 –11.0
5 10.613 10.406 11.532 1.95 –8.7
6 12.053 11.608 13.225 3.69 –9.7
7 13.571 13.043 14.878 3.89 –9.6
8 15.189 14.722 16.442 3.07 –8.2

9 16.384 15.943 17.672 2.69 –7.9
10 17.077 16.605 18.446 2.76 –8.0
11 19.712 19.343 21.125 1.87 –7.2
12 20.149 19.798 21.568 1.74 –7.0
13 30.859 30.837 32.670 0.07 –5.9
14 35.435 35.523 37.667 –0.25 –5.5
E% (max) 3.89 18.0
E% (ave) 1.98 9.90

The 13th experiment
Peak no.
1 3.755 3.757 4.416 –0.04 18.0
2 4.885 4.873 6.545 0.25 –34.0
3 6.165 6.025 8.506 2.27 –38.0
4 7.861 7.908 9.634 –0.59 –22.6
5 10.069 9.819 11.668 2.48 –15.9
6 11.083 10.776 13.488 2.77 –21.7
7 12.683 12.306 15.403 2.97 –21.4
8 14.443 14.131 17.083 2.16 –18.3
9 15.797 15.484 18.493 1.98 –17.1

10 16.587 16.259 19.477 1.98 –17.4
11 19.552 19.280 22.446 1.34 –14.8
12 20.043 19.792 22.939 1.25 –14.1
13 32.544 32.502 35.839 0.13 –10.1
14 38.005 38.029 40.953 –0.06 –7.8
E% (max) 2.97 38.0
E% (ave) 1.45 19.4

* Exp., MLR, and LSS represent experimental value, prediction value by the proposed model, and LSS model of the retention time, respectively.
† E% is the relative deviation.

Peak no. Exp.* (min) MLR (min) LSS (min) EM (%) EL (%)



relative deviation and average deviation of the retention time by
our regression model are much lower than the ones by the LSS
model for the three experimental data, and the predicted value of
each peak by our regression model is closer to the actual value.
The predictive accuracy by our regression model is satisfactory
with the maximal relative deviation of 3.89% and an average rel-
ative deviation of 1.78%. Ninety-five percent confidence intervals
of the relative deviation by our regression model and LSS model
are 1.78% ± 0.37% (n = 42) and 14.9% ± 2.3% (n = 42),
respectively.

Table III shows that the relative deviation of the retention time
predicted by the LSS model is too high, with an average relative
deviation of 14.9%. To find these possible sources of error, the
LSS model was further investigated. The LSS model was built
based on the theory of gradient elution separation. The LSS
model assumes a linear relationship between the logarithm of
the retention factor k and the organic solvent concentration, and
an ideal gradient condition of the gradient system (7). For
example, no time delay between the gradient mixer and sample
injector and solutes not moving along the column during tD.
However, this assumption is not true for an actual gradient elu-
tion system. In fact, the deviation can come from a non-linear
elution of components and a non-ideal gradient system. The
non-ideality of a gradient mainly includes two effects: the instru-
ment error and in-column factors (28). The former effect
includes (i) the solvent misproportion and flow-rate errors due
to pump design; and (ii) the gradient delay due to the volume of
the gradient mixer and the connecting tubing, etc. The latter
includes (i) the change of dead-time during a gradient elution;
(ii) uptake of organic modifier on the stationary phase and
inducing a kind of extra dwell time; and (iii) solute molecules
exhibiting size-exclusion effects. In summary, the accuracy of
the LSS model is related to the precision of an instrument, the
character of column, and the property of solute molecules. Table
III also indicates that the stronger the retention of solutes, the
higher the predictive accuracy of the LSS model. It implies that
delay in systems and in columns largely affects solutes of weak

retention and leads to a large deviation. Although the LSS model
has been applied successfully to predict the retention of many
solutes, in this work, the results also demonstrate that gradient
retention time cannot be accurately calculated with the LSS
model.

Besides, compared to the LSS model, this proposed model also
has many other advantages. It requires no prior knowledge of
properties of the mixture or the retention theory of gradient
elution, no consideration of the effects from the instrument
error and in-column factors, and no determination of the system
parameters, such as the dead-time and the dwell time. Only a
little statistical knowledge is necessary to predict the retention.
Also, the model is simpler and the regression coefficients are
easier to be obtained than the LSS model. These advantages are
especially fit for the retention prediction of complex mixtures
like fingerprints of herbal medicines.

The evaluation of optimization criteria
The values of HCRF, CRF, and the r* of experiments are listed

in Table I. The column of CRF shows that the 4th experiment has
a maximum value of 2.204. Obviously, the evaluation of the
separation quality is not reasonable because only 13 peaks were
separated in that experiment. This problem may be caused by the
fact, as mentioned previously, that well-resolved peaks
determine the function value and cover the effects of the poorly
resolved peaks, including the overlapping peaks. Although the
values of HCRF and the r* are very different, their evaluation
results are similar. Due to the fact that many subjective
coefficients of different levels are imposed, the surface of HCRF
function is not smooth and easily leads to local optima during
the optimization process. From these results, it can be seen that
the r* is a reasonable criterion for evaluating the separation
quality of fingerprint chromatograms.
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Table IV. Experimental and Predicted Retention Times for
14 Components at the Optimal Point and Relative
Deviation Between Them

The 8th experiment The 9th experiment

Exp. Pre. E%rel Exp. Pre. E%rel 
Peak no. (min) (min) (%) (min) (min) (%)

1 3.808 3.919 2.93 3.723 3.765 1.14
2 5.109 5.303 3.80 4.811 4.903 1.91
3 6.507 6.555 0.73 6.069 6.125 0.93
4 8.160 8.401 2.95 7.829 7.882 0.67
5 10.208 10.200 0.07 10.048 9.982 0.66
6 11.488 11.415 0.63 11.179 11.202 0.21
7 13.173 13.003 1.29 12.949 12.961 0.09
8 14.901 14.794 0.72 14.816 14.877 0.41
9 16.213 16.142 0.44 16.288 16.367 0.49
10 17.045 16.939 0.62 17.237 17.310 0.43
11 19.979 19.925 0.27 20.459 20.579 0.59
12 20.459 20.419 0.20 21.003 21.121 0.56
13 32.898 32.916 0.06 35.189 35.350 0.46
14 38.304 38.311 0.02 41.493 41.539 0.11
E% (max) 2.93 1.91
E% (ave) 1.05 0.62

Figure 2. Chromatograms of two optimal points. Gradient condition at the
first optimal point (the 8th experiment): initial organic solvent concentration
B0 is 24%, gradient time tG is 45 min, and final organic solvent concentration
Bi is 65% (A). Experimental conditions at the second optimum point (the 9th
experiment): B0 is 25%, tG is 48 min, and Bi is 62% (B). The sixth peak is
Puerarin and is taken as the reference peak. 
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The search of optimization parameters
In the light of the previously mentioned grid search proce-

dure, the seeking steps of B0, Bi, and tG were set to 1%, 1%, and
1 min, respectively. The first optimal point was obtained as B0,
24%; Bi, 65%; and tG, 45 min. Figure 2A shows a chromatogram
run at the searched optimal point (the 8th experiment). Its cor-
responding r* is 0.7919, higher than that of the seven initial
experiments (see Table I).

Though the first optimal point was superior to other experi-
ments, the separation between the 11th peak and the 12th peak
were not satisfactory, and an iterative option needed to be carried
out. Thus, the retention data of the 8th experiment were added
to the previous retention data set of the seven experiments and a
regression analysis was performed with the new data set. The
modified coefficients and new statistical results for the 14 com-
ponents are listed in Table II. These results show that the new
statistical parameters, including R, R2, the values of F-test, and

P for most of the peaks are slightly superior to the previous
values. A grid search was carried out again with the modified
regression model. A new optimal point was found as shown in
Figure 3, with the initial organic solvent concentration B0 25%,
the final organic solvent concentration Bi 62%, and the gradient
time tG 48 min. Figure 3 describes the relationship between the
global chromatographic function r* and the three gradient
parameters. It can be seen that the surface of function is very
smooth, thus the optimal point is easy to be found. The chro-
matogram run at the new optimal point (taken as the 9th exper-
iment) is shown in Figure 2B.

From Table I, it can be seen that the r* value at the 9th exper-
iment is 0.8037, which is higher than that at the 8th experiment.
Because none of requirements conforms to end the optimization
procedure, the iterative option needs to be further performed.
The 10th experiment was then carried out and the same optimal
point as that of the 9th experiment was obtained. Thus, one of
requirements to end optimization procedure was fulfilled, the
optimization procedure was then stopped, and the corre-
sponding conditions of the 10th experiment were taken as the
final optimal parameters. 

In Table I, the sequence numbers from 8 to 10 are the opti-
mization experiments carried out by the grid search. The exper-
imental values and predictive values of the retention time for the
first two optimal points (the 8th and 9th experiments) are com-
pared and shown in Table IV. It can be seen that the maximal
deviation and average deviation of the retention time of the 8th
experiment are much higher than that of the 9th experiment,
indicating that the second optimal point is superior to the first
one; and the higher the accuracy of the model prediction, the
closer the searched optimization condition is to the actual
optimal condition. Figure 2 shows that the baseline separation
between the 11th and the 12th peak was obtained by the iterative
optimization procedure.

Conclusions

The proposed predictive model based on multiple regressions
is simple and able to accurately predict the retention times of
herbal medicines under the gradient conditions in the optimiza-
tion regions. With the aid of the grid search algorithm, the
optimal parameters can be found through an iterative optimiza-
tion procedure. The optimal results are satisfactory, with an
average deviation between the predicted and experimental values
of only 0.62%. The results indicate that the four-step optimiza-
tion strategy is efficient and feasible. 
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